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Abstract  

Machine Learning (ML), a significant subfield of Artificial Intelligence, encompasses 

various statistical algorithms designed to learn from data, such as reinforcement learning and 

deep learning. One modeling approach that incorporates ML models is Agent-Based Modeling 

(ABM), where an ‘Agent’ A.I. learns to perform tasks by interacting with a virtual or physical 

environment. These agents can master a diverse range of tasks, from baking the perfect cake to 

competing in a soccer match against other agents, depending on the complexity of the task, the 

quality of training, and the sophistication of the model used. This research paper delves into the 

fundamentals of Machine Learning, explores the applications of ABM, elucidates the learning 

process of an agent starting from a state of zero knowledge, and provides an overview of 

developing a custom ABM using the Unity game engine. This paper, written in a simple and 

accessible manner, aims to fuel the curiosity of those at the beginning of their journey into 

machine learning and ABM technology and hopefully inspire them to develop their own agents 

to perform interesting tasks. 

Keywords: Agent-Based Models, Artificial Intelligence, Machine Learning, Deep 

Learning, Reinforcement Learning, ML-Agents, Unity 
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Agent-Based Machine Learning Analysis & Virtual Development 

Machine Learning is a fascinating aspect of the Computer Science field that encompasses 

various methods through which a computer can learn to have remarkably accurate and precise 

abilities. Machine Learning should be explained in an easy-to-understand manner so that 

individuals with basic computer literacy can comprehend just how exciting and valuable 

Machine Learning is to humanity. Given the vast and constantly updating information in the field 

of Machine Learning, it is more than what a single paper can cover. Therefore, this paper broadly 

explains Machine Learning and delves deeper into reinforcement learning models, focusing on 

Agent-Based Modeling. 

 

Machine Learning 

In the digital, data-driven era, machine learning (ML) has become a staple in creating 

highly advanced and accurate pieces of software. ML-enabled products are often used without 

understanding the complexity and limitations of the system. From a non-technical perspective, 

ML can be seen as a miracle to humanity that can automatically solve millions of previously 

unsolvable issues. While properly trained ML models can accomplish extraordinary feats such as 

accurately predicting the weather, simulating organic behaviors, and generating impressive 

imagery, these abilities are not developed overnight using one algorithm or model. Each problem 

must be carefully analyzed to understand which ML algorithm is appropriate to solve the 

problem effectively. The number of algorithms used in ML models is growing every year. 

However, there are a few important ones to note within the deep learning section of ML: 

supervised, unsupervised, and reinforcement learning. 
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Forms of Machine Learning 

Algorithms, such as supervised learning, unsupervised learning, and reinforcement 

learning, are among the many different forms a machine learning model can take to accomplish 

its tasks. Developers must choose the most relevant model for the problem they are facing. A 

model designed to classify items is not well-suited to interact with environments, so 

understanding what the algorithms do under the hood can increase the likelihood of success. 

Each algorithm category is highly complex and has enough content to fill multiple papers, so 

each will be explained briefly, providing sufficient detail to understand their capabilities and use 

cases. 

Supervised Learning 

Supervised learning can recognize relationships within a collection of items, predicting 

which category an item should be in based on past patterns. A supervised learning model must be 

trained on an already categorized dataset so the algorithm can learn which patterns relate to 

which categories through either classification or regression algorithms (IBM Technology, 2022). 

After training, the algorithm would be tested with a different data set without knowing the 

answers to evaluate its percentage of success. 

Classification algorithms, such as Logistic Regression, categorize data into discrete 

groups of items (Sarangam, 2021). A classic binary classification problem typically taught to 

beginners is the classification of cats and dogs. The algorithm is given images of dogs and cats, 

and its objective is to sort those images into their respective group by analyzing pixel patterns 

within the images and making predictions on their correct classification.  

The Logistic Regression algorithm is suited for classification problems, especially binary 

classification, to separate the data points into distinct groups linearly. Remember that the logistic 
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regression algorithm is most suited for linear datasets; using it on non-linear datasets will 

produce poor performance due to the need to separate the data well. The sigmoid function 𝑦 =

1

1+𝑒−𝑥
, where 𝑥 = 𝑏0 + 𝑏1𝑥 is used to separate the linear data into groups, as illustrated in Figure 

1 (Liu, 2019). 

Regression algorithms, such as linear regression, predict continuous values like grocery 

prices or weather forecasts. Regression is used to find the best matching rows to make 

predictions as close to actual values as possible (Sarangam, 2021). The linear regression 

algorithm is a simpler version of the logistic regression algorithm. The linear regression equation 

is 𝑦 = 𝑏0 + 𝑏1𝑥, where 𝑏0 is the intercept and 𝑏1 is the slope coefficient, which is to "predict the 

value of a variable based on the value of another equation," according to IBM (2021). 

Unsupervised Learning 

Unsupervised learning is a machine learning algorithm that groups data into classes 

without human supervision, allowing it to discover hidden patterns within the data (IBM, 2023). 

The two main methods in unsupervised learning are Association and Clustering. Association is 

when the algorithm identifies relationships between similar items. For instance, recommendation 

systems in streaming services use associations to suggest shows and movies to users based on 

their viewing history (IBM, 2023). Conversely, Clustering is when the algorithm groups similar 

items together (Sharma, 2024). For example, among millions of images, those containing 

animals would be grouped separately from those containing people. An example of an 

unsupervised learning algorithm is the K-Means Algorithm, which groups observations into 

clusters with the nearest mean. 
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Reinforcement Learning 

Reinforcement Learning uses algorithms that most closely emulate how a human learns 

through trial and error. It is commonly used to train Agent-Based Modeling to learn through 

environmental interaction, whether with the physical or digital world. Consider how a baby 

learns how to walk. At first, they cannot move beyond wiggling and randomly flailing their 

limbs. As they fail different ways to move more efficiently, they slowly learn how to roll over, 

crawl, stand on two legs, and finally move their legs one at a time to walk forward. All this while 

an adult is rewarding the baby for attempting to walk. A baby would typically learn to walk 

within 10 – 18 months, according to the Pregnancy Birth & Baby website (2022). 

Now, teaching an agent-based model to walk on two legs within a virtual world would 

take a fraction of the time it takes a baby to learn to walk. Like the baby, the agent learns through 

trial and error, guided by rewards and punishments through a closed-loop system, as illustrated in 

Figure 3 (Morales, 2020). The first step of the closed-loop system involves the agent perceiving 

its environment via sensors, including touch, hearing, or vision. The agent can be in different 

forms of an environment, whether it be a graph, 3D simulations, or in an environment without 

graphics. For example, the game engine Unity can provide perceptions through the agent's 

sensors through collision detection, audio listeners, and ray casts for 'vision.' The data that the 

agent perceives from the environment is input into the deep reinforcement learning policy 

algorithm to map the perceptions to the agent's actions that are required to achieve those 

perceived states. Then, the perceived states (“state-action pair”) are mapped to the reward values 

to estimate the cumulative reward through the value function, such as the Bellman Equation 

(Ved, 2018). The Bellman Equation is 𝑉𝜋(𝑠) =  𝐸𝜋[𝑅𝑡+1 + γ ∗ 𝑉𝜋(𝑆𝑡+1)], where 𝐸𝜋[𝑅𝑡+1] is the 

expected value of the immediate reward and γ ∗ 𝑉𝜋(𝑆𝑡+1) is the discounted value of the 
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following state (Hugging Face, 2024). Once the algorithm decides on an action, the agent 

executes that action within the virtual environment. These actions could encompass a variety of 

behaviors, such as moving, approaching objects, or attacking objects within the environment. 

Following this, the agent is rewarded or punished based on the established reward system. The 

agent then repeats all of these steps throughout the training process. 

Reinforcement learning problems adhere to a specific structure to ensure the algorithm 

receives all the necessary data for effective learning. Firstly, the goal of the algorithms must be 

clearly defined for the developer; they need to understand what the model aims to achieve 

precisely. The agent(s) must possess all the necessary properties to perceive the environment and 

take action. Their perceptions must be finely tuned and thoroughly tested to guarantee they 

capture all necessary information. The agents need to understand what exact actions are possible 

within the boundaries of their object space. The environment should be clearly defined as 

everything that is not an agent, as it can only assist the agent in decision-making through 

rewards. Finally, the reward system must be rigorously tested to provide the optimal reward 

count to the agent, fostering the learning process; the rewards must be tailored to guide the agent 

toward its goal. 

Proximal Policy Optimization (PPO), the default for Unity's ML-Agents library, is a 

reinforcement learning algorithm developed by OpenAI (Achiam, 2018). It can be applied to 

environments with continuous (floating-point numbers) or discrete (between -1 and 1) action 

spaces. Continuous actions are better suited for situations where infinite actions can occur, like 

moving from point A to point B. In contrast, discrete actions are for finite decisions like playing 

a chess game. (Bourne, Gallimard, & Tunnicliffe, 2006) After each trial, the algorithm's policy is 
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updated to minimize the cost function as much as possible using this algorithm: 𝜃𝑘+1 =

𝑎𝑟𝑔𝑚𝑎𝑥 𝐸 [𝐿(𝑠, 𝑎, 𝜃𝑘 , 𝜃)] (Achiam, 2018). 

 

Agent-Based Models 

Agent-Based Modeling (ABM) is a Machine Learning model that autonomously interacts 

with environments to learn how to complete tasks within a predetermined ruleset. Through a 

stochastic model, agents learn from a blank slate to become masters of whatever task they are 

designed to perform through millions of trials and errors. Agents can be virtual objects that 

interact with a virtual environment or physical robots that interact with physical objects. To 

learn, the agents must go through a processing loop: firstly, the agent observes the world, then 

updates their internal model using the ML algorithm it is given, then the agent takes action, and 

the whole cycle repeats while the agent is building on top of what they already know (Explorer, 

2019). 

Agent models use reinforcement learning algorithms as they correlate with the trial-and-

error learning method. Depending on the model, ABMs can be helpful for researchers to study 

the behavior of agents within specific environments, such as pitting two agents against each 

other in a hide-and-seek game, like OpenAI did in their “Emergent Tool Use from Multi-Agent 

Interaction” study (Baker, et al., 2019). As the agents trained over millions of trials, they learned 

to exploit the physics engine to move objects in unintended ways to scale high walls to reach 

their adversaries. 

Design 

Designing the agent can be tricky because the developer will need to design multiple 

iterations of the learning model to adjust what the agent can interact with and how it is 
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rewarded/punished. Choosing a suitable learning algorithm is also essential, as it can improve the 

results tremendously. Penalizing or rewarding the wrong actions can result in the agent failing to 

grasp their task. For example, if the agent gets penalized too often without that many rewards, 

they can learn to refrain from interacting with anything to avoid getting penalized during their 

trials.  

Agents and Their Attributes 

Agents are autonomous computers that observe their environment and make decisions 

based on their current situation, role, and abilities (Crooks, 2017). Attributes describe the basic 

information about the agent(s) that drive their behavior within the environment (Struthers, 2021). 

Along with dictating the agent’s behaviors, their set attributes would drive their decision-making. 

They must adhere to the roles and attributes they were given. For example, an agent in the role of 

a seeker in hide and seek must seek out other agents, specifically hiders. 

Reward System 

The reward system is a vital aspect of the agent's learning process, helping it determine if 

its actions are right or wrong. Rewards add points to the agent's counter, while punishments 

involve deducting points. Continuing with the OpenAI hide-and-seek example (Baker, et al., 

2019), the seeker-agent will be given one point when it finds a seeker but will lose one point if it 

does not find the seeker within the time limit. Through further experimentation over millions of 

trials, more rewards and punishments may be added to determine the most effective reward 

system. 

Environment and Agent Interactions  

A well-constructed environment is essential for teaching an agent because the agents gain 

rewards and observations from it as they learn to interact with it. The agent needs to receive 
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consequences every time it interacts with the environment, whether it results in a punishment or 

a reward. A simplified example would be an agent in the form of a plane being heavily penalized 

for not staying in the sky. Along with the penalty, the agent can be rewarded for maintaining 

level flight, reinforcing the goal of staying in the sky. After many trials of being penalized for 

not avoiding objects and rewarded for staying in the sky, the agent will learn to remain airborne. 

Evaluation and Adjustment 

Frequent evaluation is necessary to ensure that the agents learn from their past actions 

during training. The amount of time given to training is managed by the number of decisions, 

also known as steps, the agents make. The developer should evaluate the agent’s reward statistics 

and watch its behavior often to ensure it is learning correctly. The cumulative mean of the total 

number of points is an important statistic to monitor proper training. Logging the cumulative 

mean of rewards after a specified number of steps is one way to illustrate how well the agent 

learns from its rewards and punishments intake. If the agent’s behavior is not doing what the 

developer intended, adjustments to the learning algorithm, reward system, and observations must 

be made.  

Cumulative Mean of Rewards 

Some statistics to monitor for the agent and trials include the rewards earned or lost. A 

simple indication that the agent is learning is an increase in the mean number of rewards after 

thousands of trials. The cumulative mean is expected to be negative for the first few hundred 

trials because the agent is still learning what actions to take and what to avoid. However, if the 

mean number remains negative or continues to decrease, adjustments may be needed in the 

learning algorithm and reward system. 
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Learning Algorithm Adjustments 

Every model requires a specially tuned algorithm to learn at its highest capacity, so 

further experimentation is necessary to find the optimal combination of hyperparameters and 

reward systems. The algorithm's hyperparameters are typically the first place to look when 

seeking to improve the agent's abilities. Adjusting specific parameters of the learning algorithm, 

such as the learning rate, number of layers, number of epochs, and more can significantly impact 

training performance. While tuning the algorithm, adjustments are recommended to carefully 

evaluate how the modification affected the agent's learning ability. 

Reward System Adjustments 

Adjusting the reward system can also help performance, and this is where most of the 

experimenting will take place. The developer can experiment with different observational 

methods, such as collision and raycasting, to nudge the agent to what they want to learn. Another 

aspect of the reward system to remember is the value each reward/punishment gives the agent. 

Taking away too much of a reward can result in the agent staying in place to avoid those 

punishments, or giving too much of a reward can teach the agent to always do that action and 

never try new ones. Evaluation and adjustments can be tedious, but seeing computers learn to do 

things independently is worth the hassle. 

Deep Reinforcement Learning 

 Reinforcement learning has already been explained, but Deep Reinforcement Learning is 

a more advanced version of this type of learning. Some problems are too complex for simple 

reinforcement learning algorithms, but deep reinforcement learning can help fill those gaps as it 

changes how it handles information. Deep RL utilizes the same closed-loop system illustrated in 

Figure 3 that the simplified version of R.L. uses (Morales, 2020). Instead of using mapping 
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functionality for the state-value pairs in a table during training, Deep RL uses function 

approximation, which allows the “agent to generalize value of states it has never seen before, or 

has partial information about, by using the values of similar states” (Williams, 2022). Deep RL 

thrives in open-ended scenarios, such as teaching an agent to play soccer with continuous action 

space values. 

Agent-Based Model Research Studies 

Like all Machine Learning models, Agent-Based Modeling (ABM) is still developing, so 

there are numerous research gaps and untapped potential. Despite these limitations, ABM is still 

widely used across multiple industries and research studies. Over the past decade, agent models 

have been used to simulate the behavior of leadership and followers within flocks of birds 

(Cristiani, Menci, Papi, & Brafman, 2021) and the transport patterns of entire cities like Paris 

(Hörl & Balac, 2021). 

Research – Flocking Behavior of Birds 

Agent-based modeling can be used in various industries, such as simulating interactions 

within different roles in specific environments, such as a simulation of how leadership works 

within a flock of birds, according to ornithologists' understanding of bird behavior. 

Emiliano Cristiani and his team trained a multi-agent model to simulate the flocking 

behavior of birds within different bird roles (2021). They state that the model is based on two 

seemingly contradictory ideas: there is no designated flock leader, so local interactions between 

group members determine the flock's direction, and leadership does exist because birds assume 

different roles based on their behaviors (2021, p. 3). However, Cristiani and his team found that 

these ideas are also contradicted by the fact that:  
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All birds occasionally try to change direction and act equally as group controllers. If 

others follow them, they keep moving in a new direction; otherwise, they cease moving 

solo and return to the group. (pp. 4-5) 

With those flock behaviors in mind, they created a multi-agent-based model where birds assume 

the roles of leaders or followers. Leaders are solely responsible for changing flocking directions, 

while followers are primarily meant to follow the leader and the flock. Role changes were 

simulated through two mathematical processes: stochastic for the follower-to-leader change and 

deterministic for the leader-to-follower change. 

The interactions between the bird agents are simplified to avoid colliding with each other, 

to stay together, and to exhibit flock behavior through these interactions. The Nearest Neighbor 

algorithm is used to change leadership. According to Cristiani, Menci, Papi, & Brafman (2021), 

‘If either an agent has been a leader for p time units or the distance from its nearest neighbor is 

over d space units, then it returns to being a follower” (pp. 4-5), so the agents can switch roles 

mid-simulation to emulate the role reversal in natural flocks. 

While their primary goal was to achieve realistic flocking behavior within a 3D 

environment, they also conducted experiments with 2D flocks consisting of 200 agents to 

showcase the model's main features (p. 10). Their principal 3D simulation included 400 models, 

demonstrating that an entire flock of birds can only change directions when a critical mass of 

leaders is reached (Cristiani, Menci, Papi, & Brafman, p. 16). 

Research – City-Wide Simulation of Paris 

Agent-based modeling can be used at a macro level for complex simulations of city 

activities. In a research study conducted by Sebastion Hörl and Milos Balac (2021), they 

simulated the “travel demand with individual households, persons, and their daily activity 
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chains” within Paris, France (Hörl & Balac, p. 1). They aimed to demonstrate that it is possible 

to use public datasets of cities to simulate travel demand successfully. By utilizing datasets of 

census data, commuting relations, aggregated zonal information, and a micro-sample of around 

30% of households within France to obtain income information, they could simulate transport 

demand within Paris using Agent-Based Modeling (Hörl & Balac, p. 3). The agents’ attributes 

were designed to calculate commute distances between agents and to generate daily plans for 

each agent. The simulation results concluded that it is possible to simulate travel demand using 

publicly available city datasets (Hörl & Balac, p. 15). However, it is essential to note that the 

simulation only represents the travel demand of residents and does not consider tourists, as that 

data is not available on a large scale. 

 

Unity Machine Learning Agents Library 

The Unity game engine is software for developing video games, simulations, virtual 

environments, and more. Libraries within Unity are used to add prebuilt functionalities to 

developers' projects, and one notable library for developing artificial intelligence is the ML-

Agents library (Unity, 2024). This library equips developers with user-friendly tools to train their 

agents within a virtual environment. Agents can learn to handle properties unavailable in graph 

environments, such as momentum, gravity, and collision detection while interacting with the 

environments (Unity, 2017). With sufficient training, they can master any task they are trained to 

do. For instance, if they were trained to navigate through a busy metropolitan area, they could 

learn when it is appropriate to move and how to avoid collisions with other objects. The ML-

Agents library is a handy toolkit that creates artificially intelligent agents for behavior research 

purposes, for NPC (non-player characters) behaviors within video games, and for developing 

robotics to an extent without needing physical machinery besides a capable computer. 
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Key Features of Unity's ML-Agents Library 

Unity’s ML-Agents library provides developers with a toolkit to create intelligent and 

engaging A.I. for their projects using deep reinforcement learning. Fortunately, developers do 

not need to be experts in Machine Learning to leverage the benefits of this library. ML experts, 

particularly in agent-based modeling, can access the library through Unity's open-source policy 

and modify the code to suit their needs (Unity, 2017). For beginners or casual learners, the 

library and its documentation are straightforward in creating intelligent agents. The library is 

compatible with C# and low-level Python APIs, enabling agents to be trained using learning 

algorithms other than the default Proximal Policy Optimization (PPO) algorithm. The Bellman 

Equation (𝑉𝜋(𝑠) =  𝐸𝜋[𝑅𝑡+1 + γ ∗ 𝑉𝜋(𝑆𝑡+1)]) is used during the training process to guide the 

decision-making process. In addition to its ease of use and inclusivity, Unity provides developers 

with access to starter environments to gain hands-on experience with the ML-Agents library 

(Unity, 2024). Overall, this library is a great starting point for any aspiring ML developer or 

those who want to experiment with teaching ML agents to do exciting actions.  

Application – Controlling NPC Behavior 

A possible application for trained agents that was previously mentioned was an 

implementation into an NPC system. Typically, NPC behavior is conveyed through animations 

and A* Pathfinding to allow the NPC to navigate across a NavMesh to its designation. A 

NavMesh is a generated overlay that informs A.I. NPCs where they can navigate, preventing 

them from venturing into areas that are off-limits or out of bounds. It is designed as a simple 

method to incorporate NPC behaviors into a virtual setting. Dijkstra shortest path algorithm is 

used to navigate across a NavMesh or a directed graph by finding the shortest path to the target. 

This algorithm is used to find the shortest path within mazes, as illustrated in Figure 2, where the 
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agent determines which direction to move based on the cost amount of moving (Zafrany, 2016). 

Each direction has a number, called a “cost,” that will add or subtract from the agent’s 

cumulative reward, where the highest cost is not the direction the agent should move, such as a 

boundary or moving away from the target. It will generally choose the less costly direction to 

maximize its cumulative reward. Dijkstra’s algorithm of A.I. pathfinding can be replaced with 

the ML-Agents library to train agents to adapt to new environments automatically after training. 

Through the ML-Agents library, NPCs, or “agents," can be taught many behaviors, such 

as self-animation without pre-rendered animations, behaving in specific ways to fulfill a given 

role, and automatically adapting to new environments after training in other similar 

environments. For example, a humanoid agent can be trained to walk upright by learning to 

manipulate all of its joints and limbs to stay balanced while navigating (Warehouse, 2023). Like 

the baby analogy previously mentioned, the agent would begin the training by only being able to 

flail around. However, after millions of trials and errors of walking on a flat plane, the agent 

could walk smoothly like a capable adult human. The agent must still be trained on other 

terrains, such as stairs or declines. Once the agent is trained to a satisfied state, the model can be 

deployed to every NPC within a video game to give the game a more natural atmosphere that 

older games may lack. 

 

Custom-Built ML Navigation Agent 

Developing a custom agent-based model with unique problems to solve can lead to a 

deeper understanding of Agent-Based Modeling. Experimenting with adjusting the reward 

system, observation methods, and algorithm settings can help learn how agents adapt to their 

environment based on how those factors are configured. Additionally, experiencing agent-
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specific issues throughout development can teach more about the inner workings of the 

algorithms and learning processes. This section is a first-hand experience of the development 

process of training an agent to navigate three-dimensionally through virtual maze environments 

to reach a pressure plate target. A basic understanding of reinforcement learning algorithms and 

Unity is required. 

Model Design 

The agent is trained solely to navigate through multiple versions of a maze to reach its 

randomly spawned target. The model will utilize the Unity Editor and Unity’s ML-Agents library 

to train the agents since the editor can allow quicker training times and adds 3D visuals to see 

how the agent behaves. The model will use Proximal Policy Optimization as its learning 

algorithm. It will record training metrics of cumulative means of rewards, policy changes, and 

learning rate losses to evaluate how successful the model is after training.  

Agent’s Goal 

The agent’s goal is straightforward: navigate to the target plate by any means necessary 

without going out of bounds or exceeding the 45-second time limit. The ideal agent will avoid 

getting stuck on obstacles and quickly reach the target within a third of the established time limit. 

The agent should consistently reach the target in new environments and adapt to unpredictable 

spawning patterns for itself and the target. 

Agent and Its Attributes 

Design. The agent is designed as a red cube with a face, as shown in Figure 4. The agent 

can be in most other shapes, but the size should be within reason to fit within the environment. 

Also, invisible ray casts are stationed on the front of the agent with a 30-degree radius facing 

outward to gather visual data for the observations and reward systems. 
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Observations. The model requires capturing observations to help the agent analyze its 

surroundings and make decisions. The ray casts stationed on the agent are automatically 

collected as visual observations to give the agent a form of sight. Figure 18 shows the 

CollectObservations method, which collects the agent’s relative positions and velocity 

observations. These observations are passed to the algorithm’s policy to request actions from the 

model that the agent uses to navigate through and interact with the environment. 

Navigation. To give the agent the ability to navigate independently, it must receive the 

values of continuous actions from the model. In Figure 19, in the OnActionReceived method, the 

actions for the agent to manipulate its positional axes, y-rotational axis, and velocity are 

received. Those values change the agent’s force of direction, rotation, and orientation, as shown 

in the latter half of Figure 19. Since the agent can manipulate all positional axes, including the y-

axis, it can fly to give the agent more control over its navigation through the environment.  

Learning Algorithm. The ML Agent library uses a configuration file to modify how the 

model learns and how the environment treats itself as a training environment. The learning 

algorithm’s hyperparameters are listed here to change to find the best configuration for the 

connected model. In this model’s configuration file, the most significant hyperparameters of the 

PPO learning algorithm are the learning rate that’s set to 0.001, the number of epochs that’s set 

to 3, the beta value that’s set to 0.005, and the batch size that’s set to 1024. Also, the learning 

rate, beta, and epsilon's schedules are all linear. The file offers other settings, such as hidden 

layers, deterministic settings, number of trials to run, frame rates, quality levels, how often the 

results are logged at checkpoints, and more. This model is set to run 20 times faster than real-

time for a million steps to fast-track the training. For every 50,000th step, a report of how well the 

training has been saved to .pt and .onnx files that can be viewed through a TensorBoard GUI. 
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Target Pressure Plate 

The target is a square pressure plate stationed on the ground of the environment that the 

agent must collide with to gain the highest reward and end the current episode. Figure 5 shows 

the target in its default blue color, while Figure 6 shows it as green when the agent reaches it. 

The target is stationary throughout the entire episode; it is relocated once the episode concludes, 

whether from success or failure.  

Model Training 

Training the model well requires experimentation and randomness to encourage 

adaptability in future testing. Early iterations of the environment and movement systems did not 

encourage adaptability to new environments. As seen in Figure 10 of the older environments, the 

platforms were straightforward, and the fact that the agents and targets respawned in the exact 

locations added little to no randomness between each episode. After experimenting with different 

environment layouts, nine environments with all different layouts and walls, as shown in Figure 

7, and random spawning were created. The model's flexibility improved exponentially after 

incorporating the uniqueness and unpredictability of the training.  

The model has been trained to three steps to measure how the agents behave and how 

successful the training is at each stage: 500,000, 750,000, and 1 million steps. Each stage 

provides insights into how well the model can predict its actions, how random their decisions 

are, and the cumulative mean of many other metrics. These will demonstrate how much training 

is required for this model to reach its target in time effectively. 

Initialization 

 At the beginning of every simulation, the agent and environment properties must be 

initialized to their default state to ensure the model is calibrated correctly for training, as shown 
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in Figure 17 in the Initialize method. Firstly, the base class’s Initialize method is called to set up 

the default parameters, and the default environment parameters are set by the Unity ML Agent 

Academy, which is the Unity singleton class that manages the training and the agent’s decision-

making abilities. Then, the agent's orientation, game object, and previous position properties are 

initialized to their default values of zero for the orientation and references to the agent's game 

object's rigid body and starting positional axes.  

Spawning 

Nine agents are trained simultaneously in nine unique environments to accelerate training 

time. Random spawn points and unique environments avoid overfitting the model to one specific 

situation, such as the original environments and spawn locations. The agent and target have four 

and five different spawn points, respectively. The spawn points are laid out like a tic-tac-toe 

board, as illustrated in Figure 8: the target can spawn on any of the corners and the middle, while 

the agent can spawn in the remaining open spots between the target spawn points. Each maze 

layout is designed to accommodate the spawn points by keeping those spawn areas free of 

obstructions. The spawn functionalities are used in multiple areas of the source code, such as the 

OnEpisodeBegin method in Figure 25 and the OnTriggerEnter and Respawn methods in Figure 

26. 

Reward System 

The reward system has been carefully crafted, including how often the agents receive 

rewards and punishments and how many points are given and taken. There are three categories of 

rewards that the agent can receive: positional rewards, observational rewards, and time-related 

rewards. By all means, this reward system does not guarantee producing the most intelligent 

agent after training. Constant experimentation with the reward system is vital to ensuring the 
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agent can learn as the developer intends. The agent will inhibit interesting behaviors if it receives 

a reward too often, not often enough, too little, or too much, so it is best to keep track of each 

version of the reward system and how it produces agents. 

 Positional Rewards. Positional-related rewards are to track where the agent is within the 

environment and to encourage the agent to stay within boundaries and move toward the target’s 

location. The agent must find out where the target is when it begins training. The single hint of 

its location is from the rewards given when it moves closer to the target and is punished for 

moving away. In Figure 23, in the FixedUpdate method, the positions of the agent and target are 

captured in every frame and used to determine if the agent is closer to the target than in the 

previous frame. As the agent moves closer to the target, it is rewarded with 0.001, but 0.001 

points are removed from the agent as it moves further away. The rewards are minuscule to avoid 

over-rewarding and over-punishing the agent because of how quickly the points can add up after 

each frame of an episode. 

Additionally, the agent is encouraged to stay within the environment's boundaries by 

removing half a point from the agent’s total rewards, as seen in the latter half of the FixedUpdate 

method of Figure 23. The current episode also ends when the agent is removed from the 

boundary, which is heavily discouraged. The length and width boundaries are set at the edges of 

the map, but the agent is given a semi-large height boundary to allow floating above walls to 

reach targets quickly. 

Observational Rewards. The most significant contributors to the total reward count are 

collision and ray cast sensors, giving the agent senses of sight and touch. After learning the 

target's direction, the agent would constantly bump into walls blocking the target. So, with the 

ability to detect obstructions and the target itself, it can learn to avoid the walls when a quarter 
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point is deducted every time the agent collides with game objects labeled with the "Wall" tag, as 

seen in Figure 24 in the OnCollisionEnter method. This punishment, however, only teaches the 

agent to move away from the wall after it collides with it, essentially bouncing off every wall. 

Raycasts may solve that issue; they can detect objects a few meters away from it in whatever 

direction they face. These ray casts are stationed on the front of the agent with a 30-degree radius 

to give it some limitation to its sight. As shown in Figure 21 in the OnActionReceived method, 

the ray casts detect walls and deduct 0.0001 points from the agent but add 0.0001 points when 

the ray casts detect the target. 

Time Rewards. The agent is encouraged to find the most efficient and quickest way to 

reach the target by giving it a time limit and giving rewards based on its velocity. The agent’s 

current velocity is multiplied by 0.01 and given as a reward, as shown in Figure 20 in the 

OnActionReceived method, to encourage moving quickly through the environment. However, if 

the agent moves too fast, it most likely moves outside the environment boundary. The 

punishment administered via the boundary limits keeps the agent from moving too quickly. In 

conjunction with the velocity reward, the agent is punished for taking too long to reach the 

target. Each episode has a 45-second time limit, and when that limit is reached, the agent is 

punished with a 0.05-point reduction, as shown in Figure 22 in the FixedUpdate method.  

Model Observations and Results 

Three model versions have been trained at different steps to compare the model’s 

efficiency and behavior differences after the different levels of training: 500K, 750K, and 1 

million steps. Most observations will center around the 500,000-step model since it is the most 

consistent at reaching the target. Each version of the model developed interesting strategies to 

navigate through the environment to reach the target, such as floating across the maze or 
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bouncing off walls like a pinball machine. However, as the model trained further, the agent’s 

decisions became more reckless and sporadic. This decrease in quality can be explained through 

a metric evaluation of the policy, learning loss rates, and environment cumulative reward of all 

training steps. 

Along with the automatic metrics, the results of a few hundred episodes have been 

captured to evaluate how often the agents reached the target, fell out of the maze boundary, and 

failed to reach the target within the 45-second time limit. Overfitting is a common way a model 

worsens the more it trains. However, other factors to consider when evaluating a model, such as 

algorithm configurations and the reward system balance, can be modified to improve behaviors 

beyond 500,000 steps. 

Efficiency Evaluation 

Each version of the model was tested for five minutes to observe how often the agent 

reached the target successfully. The results in Table 1 show how often each version succeeds by 

reaching the target, fails due to exiting the maze boundary, and fails due to time running out 

before reaching the target. The best version in all areas is the 500,000-step version, which 

completed the most trials with 366 targets reached, four time limit fails, and 93 out of boundary 

fails. Each subsequent version completes fewer trials and fails more trials more often than the 

previous version. The more trained agents tend to take more time to find the target, resulting in 

the time limit being reached, and tend to fly higher and quicker, resulting in going out of bounds. 

The increase in time limits reached is shown in Figure 12, as the mean length of each episode 

increases after step 500,000.  

A vital statistic captured during training is the cumulative mean of rewards throughout all 

training steps. The cumulative mean of rewards is displayed as a table in Table 2 and as a chart 



Agent-Based Machine Learning  29 

 

   

 

in Figure 11. Table 2 only shows cumulative rewards up to 500,000 steps, while Figure 11 shows 

the cumulative means up to 1 million steps. In order to indicate a successful model, the 

cumulative mean should increase as the training session continues. As expected, the cumulative 

mean begins as a negative number because the agent loses points from erratically moving 

around, which leads to bumping into walls and leaving the boundary. The cumulative mean 

increases once the agent moves closer to the target more often and accidentally collides with the 

target. Accidental target collisions are imperative for early learning because losing rewards due 

to constant wall collision punishments and moving away from the target can hinder training. 

After the initial learning curve, the agent minimizes the number of times it collides with the 

walls and consistently reaches the target to increase its cumulative mean of rewards gradually 

and consistently. 

Behavior Observations 

 Behavioral observations can provide developers with a more visual representation of how 

well the model is performing. The following observations will be from a human observer 

watching all three model versions test themselves for an hour each. As shown in Table 1, the 

version that reached the most targets within five minutes was the 500,000-step version, 

consistent with how the model behaved during testing.  

Since the 500,000-step model could adjust its height, it learned to float above walls to 

reach its target quicker by avoiding the walls entirely. Sometimes, it would get stuck on the walls 

as it floated upwards, but it would correct itself by moving backward and launching itself from 

that spot to gain more space between itself and the wall to scale it better. However, that strategy 

is not 100% effective as the agent sometimes overshoots the target entirely and goes out of the 

boundary. However, it does work enough times for the agent to keep that strategy in its memory. 
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The agent was trained to avoid colliding with the walls through its collision and ray casts-

detection sensors, but the agent still collides with walls in the 500K-step model and subsequent 

versions. Fortunately, it was learned not to bump into walls repeatedly but instead bounce off 

walls to navigate around the maze. Once it touches a wall and realizes it is not the target, it 

immediately redirects to a different wall to bounce off and get around it, blocking the target. 

Figure 9 demonstrates how the agent would typically navigate an environment to reach a target if 

it did not float above walls. The agent is not restricted to navigating in straight lines but can also 

curve around walls. 

 The subsequent 750K and one million-step versions behave more recklessly while 

moving toward the targets. Compared to the 500K-step model, the agents with more training tend 

to fly higher and move quicker, which limits their precision in reaching targets. With the more 

erratic movement strategies, it tends to overshoot its targets and fly out of all boundary lines. 

This behavior hinders the efficacy of reaching the targets, as shown in Table 1, where the 

number of fails due to exceeding the time limit or crossing boundary lines increases. 

Learning Loss Results 

The Unity ML-Agents library automatically provides metrics in histograms and graphs to 

measure how successful the model’s training sessions are (Unity, 2017). Those charts can be 

viewed through a TensorBoard GUI after the result reports are saved and the designated 

checkpoint has been reached. Some metrics are used to evaluate the loss functions, quantifying 

how close the model's predictions are to the actual results. After training, this custom model 

provided two learning loss metrics for the policy loss, which measures the mean magnitude of 

the policy loss function and correlates to how much the policy for deciding future actions is 



Agent-Based Machine Learning  31 

 

   

 

changing, and value loss, which measures the mean loss of the value function update and 

correlates to how well the model can predict (Unity, 2017).  

The policy loss is illustrated in Figure 13 as a line graph that fluctuates throughout 

training. The magnitude should decrease during training to indicate a successful training session, 

but there are many highs and lows throughout the graph to conclude otherwise. The lowest point 

is 0.02068 at step 600,000, which rises again as training goes to step 1 million. These 

fluctuations indicate instability within the decision-making process because the chart should 

stabilize after decreases. The learning rate or batch size can be adjusted to remedy this 

instability. On the other hand, additional training may be required because spikes in policy loss 

are expected when the model explores other strategies, leading to temporary instability. 

The value loss is illustrated in Figure 14 as a line graph that significantly increases from 

0.02686 at step 50,000 to 0.9539 at step 700,000 and then slightly decreases after step 700,000. 

While the agent is learning, this mean of loss should tread exactly how it does in Figure 14 to 

indicate success: increasing and decreasing once the reward stabilizes. However, it decreases as 

it reaches 1 million, so additional training may be needed to stabilize the reward. 

Policy Statistics  

Along with the learning loss functions, the policy performance is recorded. Policy 

performance statistics evaluate how well the agent can determine their following action through 

the policy. The two charts for the policy statistic measurements are the changes in entropy, 

which measure how random the decisions of the model are, and the changes in the learning rate, 

which measure how large a step the training algorithm takes as it searches for the best policy 

(Unity, 2017).  
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The entropy changes are illustrated in Figure 15, where they gradually decrease to 

indicate successful training. If it decreased too quickly, the beta hyperparameter would need to 

be increased to achieve that slow, gradual decrease trendline. No adjustments are necessary since 

it has gradually decreased throughout its training sessions. 

The learning rate changes are illustrated in Figure 16, where it starts at 0.0000948 and 

decreases down to 0.0000197 by step 500,000. The learning rate is supposed to decrease over 

time to indicate successful training. However, when it reaches step 1 million, it increases and 

decreases twice, resulting in two gradual spikes in the changes. These fluctuations are visually 

apparent when the agent behaves more poorly beyond step 500,000. 

Future Adjustments and Additions 

 The model can be significantly improved to help it train beyond 500,000 steps since it 

gets worse at reaching the target the more it trains. A camera-based lidar sensor can add more 

visual observations that help see objects before colliding with them, thus remedying the agents 

bouncing off walls to navigate. One thing to keep in mind with camera sensors is noise. Too 

much noise from the sensor could hinder its ability to observe using the camera, so limiting as 

much noise as possible is critical to getting the most out of a camera sensor. Some adjustments to 

the learning algorithm's hyperparameters can also help, but that requires significant testing to 

find a better combination of values, as tuning can be tedious. 

 Additional unpredictability and interactions can add new behaviors to how the agents 

reach their targets. Currently, the targets are static in one place for the agent to reach for the 

entirety of the episode. The agent's goal can become more challenging if the target can also 

move, producing different strategies beyond floating above walls. The target can also become an 

agent, changing the model into a multi-agent model that pits two agents against each other in a 
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cat-and-mouse game. This target-to-agent suggestion is a significant change that can lead to new 

behaviors and challenges with refining the hyperparameters, observations, and reward system. 

New interactions, such as moveable objects, can be implemented, so the agent can use mini-

walls, stairs, or simple cubes to reach their target.  

The following suggestion is not necessarily made to improve the learning model but to 

improve how the model is presented. Currently, the model, environment, and game models are 

straightforward, using cubes and planes. The current context of the environment could be more 

compelling to a human observer with some slight modifications. To align with the current 

behaviors of consistently floating above walls and to add better context to the model, change the 

appearance of cubes to birds attempting to land in nests instead of target pressure plates. This 

context would raise the environment's height significantly, add trees and tree branches for the 

nests to spawn on, and add the nests themselves. While this suggestion is primarily for aesthetic 

purposes, the environment and models' appearance can influence expectations for how the model 

should behave. Observers can now expect the agents to fly, while that behavior was not an 

expectation in the current maze-like environments.  

 

 Conclusion  

Machine Learning 

As an essential aspect of modern computing, machine learning is implemented in many 

consumer products, but knowing how the algorithms that power them work can give further 

insight into the capabilities of ML. Supervised, unsupervised, and reinforcement types of 

machine learning can only tackle problems catered to how their algorithms learn. Developers 
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must understand how each type of learning works and the problems at which they excel. For 

example, reinforcement learning excels immensely in agent-based modeling. 

Agent-Based Modeling 

Through reinforcement learning, agent-based modeling teaches A.I. how to interact with 

environments to accomplish their task. As explained previously, the applications of agent-based 

modeling are vast and used in many exciting studies to observe how a machine imitates the 

behaviors of organisms in situations and simulates systems in large environments. For example, 

the flocking behavior of birds and the demand for travel within a large city like Paris. These 

studies merely scratch the surface of ABM, as agents can be taught to precisely manipulate parts 

of themselves, such as joints or entire limbs, to navigate independently. 

The design of an agent sets the stage for how well their training can go. They must be 

aware of their environments, what actions they are permitted, what limitations they are held 

under, and how the reward system reinforces their behavior. Designing the agent requires 

experimenting with the aspects mentioned to create the perfect system to accomplish learning.  

Additionally, evaluating and adjusting the model is just as imperative to improving the 

model. The Unity ML-Agents library provides metrics of how well the agents are training 

through multiple charts and graphs. These charts and graphs illustrate the changes in the 

algorithm’s policy, the model’s cumulative rewards, and the learning loss functions. Paying 

attention to these metrics can help the developer to know what to change to improve the model 

significantly. 
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ML Agents on Navigation 

The agent model explained in detail in a previous section is a custom-built model to 

describe the first-hand experience of designing, evaluating, and adjusting an agent-based model. 

The model’s goal is to navigate through a maze to locate and touch their targets by any means 

necessary. The quickest strategies learned to reach the target were fascinating to watch develop 

in real time. While evaluating the model’s metrics, there is a clear indication that the 

hyperparameters and some aspects of the model’s design can be modified to improve the results. 

As seen in Figure 13, the fluctuations within the policy loss suggest that the learning rate and 

batch size can be tuned further to help stabilize the mean magnitude of policy loss. Despite the 

improvements that can be made, the custom-built model learned to take advantage of its 

observations, actions, and abilities to reach its target successfully. 
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Tables  

Table 1  

Agent Trial-Ending Events within Five Minutes  

Event 500K Steps 750K Steps 1Mil Steps 

Out of Bounds 93 31 23 

Out of Time 4 16 21 

Reached Target 366 347 249 

Total Trials 462 394 293 

 

Note: This table presents the results of testing three different model intelligences for five 

consecutive minutes using identical hardware. Given the current training configuration of the 

model, training with 500,000 steps yields the best results.  
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Table 2  

Cumulative Mean Reward Over Time 

Step Counter Mean Value of Rewards 

50,000 Steps -5.86 

100,000 Steps 9.78 

150,000 Steps 8.594 

200,000 Steps 13.53 

250,000 Steps 21.36 

300,000 Steps 33.12 

350,000 Steps 40.49 

400,000 Steps 53.77 

450,000 Steps 82.78 

500,000 Steps 114.6 

 

Note: Correlates to Environment/Cumulative Reward Chart in Figure 11.  
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Figures 

Figure 1 

Logistic Regression Example 

 

Note: Separates the linear data into groups, provided by Davide Liu (2019). 
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Figure 2 

Dijkstra’s Algorithm Movement Cost Visualization 

 

Note: The maze illustrates the movement cost from Dijkstra’s algorithm, provided by Samy 

Zafrany (2016) 
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Figure 3 

Deep Reinforcement Agent-Based Modeling System Loop 

 

Note: System loop for an agent receiving observations from the environment, responding with 

action, and receiving a reward/punishment in return, provided by Miguel Morales (2020). 
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Figure 4 

Agent Model 

 

Note: There are also invisible ray-cast lines emanating from the target’s forehead, but the face is 

added as a visual component of direction and intent. 
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Figure 5 

Target Pressure Plate Default State 

 

Note: Returns to this state when an episode indicates the agent has not met its goal. 

Figure 6 

Target Pressure Plate Success State 

 

Note: Material turns green and decreases in the y-axis to indicate success.  
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Figure 7 

Maze Environments in Progress of Testing 

 

Note: 9 unique mazes for the agents to train in. Agents can fly over walls or through corridors to 

reach their targets. 
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Figure 8 

Agent and Target Spawn Locations 

 

Note: At the start of each trial, the agent and target are randomly spawned in these locations.  
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Figure 9 

Agent Path Track to Target Example 

 

Note: This is only one example of a common path an agent would take to get to its target since it 

tends to bounce from wall to wall. It is worth noting that the agent can also curve around corners 

and jump over walls to reach their target. 
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Figure 10 

Original Designs of Environments 

 

Note: These environments did not encourage adaptability because of the lack of randomness and 

similar environment structure besides the bridge layout.  
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Figure 11 

Environment/Cumulative Reward Chart 

 

Note: This describes the cumulative mean, labeled as "value," of the reward of all agents.  

Figure 12 

Environment/Episode Length Chart 

 

Note: This describes the mean length of each episode of all agents. 
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Figure 13 

Losses/Policy Loss Chart 

 

Note: This describes the mean magnitude of the policy loss function. 

Figure 14 

Losses/Value Loss Chart 

 

Note: This describes the mean loss of the value function update. 
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Figure 15 

Policy/Entropy Chart 

 

Note: This chart describes how random the decisions of the model are. 

Figure 16 

Policy/Learning Rate Chart 

 

Note: This describes how large of a step the algorithm takes as it searches for the best policy.  
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Figure 17 

Initialize Method in MovingAgent C# Class 

public GameObject agentObject;  
private Vector3 previousPosition; 
EnvironmentParameters defaultParams; 
Rigidbody agentRigidbody;  
Vector3 orientation; 
 

public override void Initialize() 
{ 

  // Call the base class's Initialize method to set up default parameters 

  base.Initialize(); 
 

  // Get the Rigidbody component attached to the agent, which is used for physics 

calculations 
  agentRigidbody = gameObject.GetComponent<Rigidbody>(); 
 

  // Initialize the agent's orientation to zero 
  orientation = Vector3.zero; 
 

  // Get the default environment parameters from the Unity ML Agents Academy 
  defaultParams = Academy.Instance.EnvironmentParameters; 
 

  // Store the agent's initial position 
  previousPosition = agentObject.transform.position; 
 

}  

Note: Initializes the agent's physical properties, orientation, position, and environment 

parameters at simulation start. 

  



Agent-Based Machine Learning  54 

 

   

 

Figure 18 

CollectObservations Method in MovingAgent C# Class 

public GameObject target; 

public GameObject agentObject; 

Rigidbody agentRigidbody; 

 

public override void CollectObservations(VectorSensor sensor) 
  { 

    Vector3 relativePosition = target.transform.position - agentObject.trans-

form.position; 
    sensor.AddObservation(relativePosition); 
    sensor.AddObservation(agentRigidbody.velocity); 
  }  

Note: Collects the current position and velocity of the agent to pass them to the decision-making 

policy to request an action as a response. 
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Figure 19 

OnActionReceived Method in MovingAgent C# Class 

public GameObject agentObject; 
public GameObject raycastSensorObject; 
public float strength; 
Rigidbody agentRigidbody; 
Vector3 orientation; 
 

public override void OnActionReceived(ActionBuffers actionBuffers) 
  { 

    // Continuous actions are received in values between -1 and 1  
    float x = actionBuffers.ContinuousActions[0]; 
    float z = actionBuffers.ContinuousActions[1]; 
    float y = actionBuffers.ContinuousActions[2]; 
    float strengthAction = actionBuffers.ContinuousActions[3]; 
    float rotation = actionBuffers.ContinuousActions[4]; 
 

    // Scale the strength action to the desired strength range between -1 and 1 
    strength = Mathf.Lerp(30, 60, (strengthAction + 1) / 2); 
 

    // Agent adds force, rotation, and orientation to itself from continuous actions 
    agentRigidbody.AddForce(new Vector3(x, y, z) * strength); 
    agentObject.transform.Rotate(0, rotation, 0); 
    orientation = new Vector3(x, 0, z); 
 

    // Rewards/Punishments 

    // Encourages agent to move quickly 

 ... 
  }  

Note: Receives five continuous actions from the model: x-axis, y-axis, z-axis, rotation, 

movement strength, and ray casts perception sensors. Then, the agent uses those actions to 

change its rotation and orientation and adds force to itself to move its position. 
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Figure 20 

OnActionsReceived Method in MovingAgent C# Class 

public override void OnActionReceived(ActionBuffers actionBuffers) 
  { 

    // Received Continuous Actions  

... 

 
    // Encourages agent to move quickly 
    float speed = agentRigidbody.velocity.magnitude; 
    AddReward(speed * 0.01f); 
 

    // Discourages agent from taking large actions 
    AddReward(-0.05f * ( 
        actionBuffers.ContinuousActions[0] * actionBuffers.ContinuousActions[0] + 
        actionBuffers.ContinuousActions[1] * actionBuffers.ContinuousActions[1]) / 

3f); 
 

    // Prepare the input for the Perceive method 

    // Loop through each raycast hit 
... 

  }  

Note: Allocates rewards and punishments for speed-related actions. 
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Figure 21 

OnActionsReceived Method in MovingAgent C# Class 

public override void OnActionReceived(ActionBuffers actionBuffers) 
  { 

    // Received Continuous Actions  

... 

 

    // Encourages agent to move quickly 

 ... 
 

    // Prepare the input for the Perceive method 

    var rayPerceptionSensorComponent = 

raycastSensorObject.GetComponent<RayPerceptionSensorComponent3D>(); 
    var rayInput = rayPerceptionSensorComponent.GetRayPerceptionInput(); 
    var perceptionOutput = RayPerceptionSensor.Perceive(rayInput); 
     
    // Loop through each raycast hit 
    foreach (var raycastHit in perceptionOutput.RayOutputs) 
    { 

      if (raycastHit.HitTagIndex >= 0 && raycastHit.HitTagIndex < 

rayPerceptionSensorComponent.DetectableTags.Count) 
      { 

        string hitTag = 

rayPerceptionSensorComponent.DetectableTags[raycastHit.HitTagIndex]; 
        // Check if the raycast hit a GameObject with a specific tag 

        if (raycastHit.HitTagIndex != -1) 
        { 

   // Encourages agent to go towards a target 

          if (hitTag == "Target") { AddReward(0.0001f); } 
   // Discourages agent from hitting/staying on walls 

          else if (hitTag == "Wall") { AddReward(-0.0001f); } 
        } 

        else { Debug.Log("HitTagIndex is out of range."); } 
      } 

    } 

  }  

Note: Allocates rewards and punishments for Raycasts-related observations. 
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Figure 22 

FixedUpdate Method in MovingAgent C# Class 

private float timeSpent; 
private float timeLimit = 4500.0f; 
 

void FixedUpdate() 
  { 

    // Forces a decision 
    RequestDecision(); 
 

    // Penalizes agent for taking too long to reach target 
    timeSpent += 1; 
    if (timeSpent >= timeLimit) 
    { 

      Debug.Log("Out of Time"); 
      AddReward(-0.05f); 
      EndEpisode(); 
    } 

 

    // Calculate distances before updating previousPosition 
... 

  }  

Note: Allocates punishment for agents exceeding the time limit. 
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Figure 23 

FixedUpdate Method in MovingAgent C# Class 

public GameObject target; 
public GameObject agentObject; 
private Vector3 previousPosition; 
 

void FixedUpdate() 
  { 

    // Forces a decision 
    RequestDecision(); 
 

    // Penalizes agent for taking too long to reach target 
 ... 
 

    // Calculate distances before updating previousPosition 
    float currentDistance = Vector3.Distance(agentObject.transform.position, 

target.transform.position); 
    float previousDistance = Vector3.Distance(previousPosition, 

target.transform.position); 
 

    // Encourages agent to move closer to target 
    if (currentDistance < previousDistance) { AddReward(0.001f); } 
    else { AddReward(-0.001f); } 
 

    // Update previousPosition after calculating distances 
    previousPosition = agentObject.transform.position; 
 

    // Discourages agent from leaving maze boundary lines in all directions 
    if (gameObject.transform.localPosition.x < -14 || 

gameObject.transform.localPosition.x > 8 
      || gameObject.transform.localPosition.z < -10 || 

gameObject.transform.localPosition.z > 11 
      || gameObject.transform.localPosition.y < -2 || 

gameObject.transform.localPosition.y > 5) 
    { 

      Debug.Log("Out of Bounds"); 
      AddReward(-0.5f); 
      EndEpisode(); 
      return; 
    } 

  }  

Note: Allocates rewards and punishments for the agent moving closer to the target, moving away 

from the target, and moving out of bounds. 
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Figure 24 

OnCollisionEnter Method in MovingAgent C# Class  

void OnCollisionEnter(Collision collision) 
  { 

    // Discouraging agent from colliding with a wall 
    if (collision.gameObject.CompareTag("Wall")) 
    { 

      AddReward(-0.25f); 
    } 

  }  

Note: Allocates punishment for colliding with objects with the “Wall” tag. 
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Figure 25 

OnEpisodeBegin Method in MovingAgent C# Class 

private float timeSpent; 

private Vector3[] agentSpawns = { new Vector3(-2, 0.5f, 7), new Vector3(-11, 0.5f, 0), 

new Vector3(5, 0.5f, 0), new Vector3(-2, 0.5f, -7) }; 

 

Rigidbody agentRigidbody; 

 

public override void OnEpisodeBegin() 
  { 

    // Select a random spawn point for the agent at the start of each episode  
    int randPosition = UnityEngine.Random.Range(0, 4); 
    gameObject.transform.localPosition = agentSpawns[randPosition]; 
 

    // Reset the agent's velocity to ensure it doesn't carry over speed from the 

previous episode 
    agentRigidbody.velocity = Vector3.zero; 
 

    // A reference to the maze environment 
    var environment = gameObject.transform.parent.gameObject; 
 

    // Get all the targets in the environment 
    var targets = environment.GetComponentsInChildren<StationaryTarget>(); 
 

    // Respawn each target at the start of the episode 
    foreach (var t in targets) 
    { 

      t.Respawn(); 
    } 

 

    // Reset the time counter tracking how long the agent has been trying to reach 

the target 
    timeSpent = 0.0f; 
  }  

Note: Prepares environments for a new episode by spawning agents and targets in randomly pre-

selected positions across the environment and resetting velocities and elapsed time. 
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Figure 26 

OnTriggerEnter and Respawn Methods in StationaryTarget C# Class 

// Used to visually indicate target's state (default or clicked) 
public Material defaultMaterial; 
public Material clickedMaterial; 
 

// Renderer for changing target's appearance 
Renderer myRenderer; 
 

// Define the possible spawn points for agent and target 
private Vector3[] agentSpawns = { new Vector3(-2, 0.5f, 7), new Vector3(-11, 0.5f, 

0), new Vector3(5, 0.5f, 0), new Vector3(-2, 0.5f, -7) }; 
private Vector3[] targetSpawns = { new Vector3(-11, 0.5f, 7), new Vector3(5, 0.5f, 

7), new Vector3(-2, 0.5f, 0), new Vector3(-11, 0.5f, -7), new Vector3(5, 0.5f, -7) }; 
 

// Triggered when agent reaches target 
void OnTriggerEnter(Collider collison) 
{ 

  // Check if the colliding object is the agent 
  var agent = collison.gameObject.GetComponent<Agent>(); 
  myRenderer = gameObject.GetComponent<Renderer>(); 
  if (agent != null) 
  { 

    Debug.Log("MovingAgent Got Target"); 
 

    // Change the target's appearance to indicate it has been reached 
    myRenderer.material = clickedMaterial; 
 

    // Max reward for agent reaching target 
    agent.AddReward(1f); 
 

    // Move agent to a random spawn point for the next round 
    int randPosition = UnityEngine.Random.Range(0, 4); 
    agent.transform.localPosition = agentSpawns[randPosition]; 
 

    // Schedule target to respawn at a new location after a quarter of a second  
    Invoke("Respawn", 0.25f); 
  } 

} 

 

// Moves target to a new location and resets its appearance 
public void Respawn() 
{ 

  // Reset target's appearance 
  myRenderer = gameObject.GetComponent<Renderer>(); 
  myRenderer.material = defaultMaterial; 
 

  // Move target to the chosen spawn point 
  gameObject.transform.localPosition = targetSpawns[UnityEngine.Random.Range(0, 5)]; 
}  
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Note: Allocates reward for agent reaching target and resets environment for next episode. 


